

BAE Batterien GmbH

Comparison GEL – AGM

M. Schiemann

Distribution only by express authority of BAE Batterien GmbH

Water decomposition lead acid batteries

Water decomposition is a secondary reaction in lead-acid and nickel/cadmium batteries, which can't be avoided!

Minimal requirements for recombination process:

- Internal oxygen cycle necessary for recombination of hydrogen and oxygen gas
- Oxygen development at the positive electrode
- Hydrogen development at the negative electrode
- Fast gas transport (oxygen) is for recombination at the negative electrode necessary
- No dilution of gas inside fluid electrolyte possible
- Fast gas transport only by diffusion possible, if free inside electrolyte is available (Gel or AGM)

Electrolyte fixed as Gel or AGM

Two technologies possible:

- > Gel 3 10 % SiO₂ (electrolyte fixed by silica)
- flies mat (AGM absorbent glass mat) separators

Technology

Free space inside electrolyte:

GEL:

• from shrinking during solidification process results cracks inside the gel, which makes fast gas transport between the plates possible.

AGM:

• Fluid electrolyte is fixed by capillary power. The small pores of the fleece are filled with electrolyte, while larger pores are available for gas transport

95% - 98 % efficiency of internal recombination cycle

Technology: Recombination process

Positive Electrode:

Development of oxygen gas obtained by water decomposition:

Negative electrode:

Development of hydrogen ions

Transfer of oxygen gas to the negative electrode through the free space

Technology: Recombination process

Negative electrode:

```
Recombination of the oxygen gas – negative electrode develop continually lead sulphate (during battery life partially discharged)
2 Pb + O_2 \rightarrow 2 PbO
```

```
PbO + H_2SO_4 \rightarrow PbSO_4 + H_2O
```

<u>Negative electrode:</u> Recharge of lead sulphate to lead

 $PbSO_4 + 2H^+ + 2e^- \rightarrow Pb + H_2SO_4$

The recombination process at the negative electrode is accompanied by heat development \rightarrow drying and aging of the battery

Technology: Recombination process

Technology: GEL

Construction GEL

 Network of silicic acid particles with high surface (200 m²/g). The GEL can transferred to a fluid consistence by mixing.

Pore system:

- Between the network particles of silicic acid particles is a system of pores with a diameter from 0,1 μ to 1μ

Fixing of electrolyte:

• Acid is fixed by capillary power and high surface of the particles and is changed to GEL (also well know from the principle of solid paint).

Technology: GEL

Battery construction:

Filling at fluid consistence like acid. Then permanent mixing and gelling with acid during charge of batteries.

Technology: GEL

BAE Energy from Batteries

Technology: AGM

Construction AGM

• Woven net of glass fibers with different thickness (0,25µ to 3µ)

Pore system

• Between the fibers is a system of pores with a diameter of 1µ to 10µ

Fixing of electrolyte

• The sulfuric acid is absorbed and fixed by the capillary power like with a sponge

Technology: AGM

Battery construction

The glass mat is assembled between the plates during plate staking with a high pressure to obtain the good contact
 between the active mass and the glass matt. Acid is filling with a filling grade of 95 % after assembly.

Gas channel

Sulfuric acid as fixed electrolyte

Fibers

Construction and structure of AGM

Technology: AGM

Construction and structure of OPzV

Technology: GEL

Distribution only by express authority of BAE Batterien GmbH

BAE

Benefits of BAE flash arresting valve

Technology: Valve

- Applied for OPzV single cell an bloc batteries and OGiV single cells
- Secure opening at 120 mbar+-30 %
- Secure closing above 50 mbar
- high precision rubber part with a lip seal
- Flash-arresting by a micro porous frit
- Perfect gas drying, no acid fumes outside
- The valve is securely screwed into the bayonet opening

Technology comparison:

	GEL	AGM
Pore size	0,1µ to 1µ like positive/ negative mass (lead to high capillary power)	1μ to 10μ (low capillary power)
SiO ₂ weight / acid weight	Up to 10 % SiO ₂	Up to 10% SiO ₂
Structure	Si-O-O-Si - molecular chains	0,25µ to 3µ thick SiO ₂ fibres
Elasticity / plasticity	plastic, keeps contact to plates	Elastic in a small range
Location	contact to box, includes straps	only between the plates
Additional micro-porous separator	Yes	no

Acid stratification, obtained by low capillary power:

Technology comparison:

	GEL	AGM	
Internal resistance	average, because GEL and the separator is present		
Power density	average average electrical losses, also low space requirement	good low electrical losses and low space requirement	
Cycle life time	cle life time excellent, because no acid average stratification, small pores, mass protection at tubular lack of oplates by gauntlets		
Costs (initial ivest)	average, besides the separator the GEL costs are additional	low, because the glass-mat is cheaper than the microporous separator	

Technology comparison:

	GEL	AGM
Total cost over life time	Lower related to AGM, due to higher life time (design life time and operational life time) and cycle stability	Higher related to GEL (especially tubular plate design) due to the danger of fast capacity decrease (PCL2 effect)
Design specialities	No cell's height restriction, cell design with positive tubular and flat/grid plates are possible with GEL	Plate thickness has to be in very low tolerance; AGM batteries are possible only with flat/grid plates
		Cells height not higher than nearly 350 mm, to prevent non uniform acid distribution obtained by low capillary power

Technology comparison: Thermal runaway simulation

- Tmax = 50°C after 28 h
- Total current increases to 5A
- 6V 68Ah GEL

- Tmax = 80°C after 4,5 h
- Total current increases to 40A
- 6V 68Ah AGM

BAE Gel Products - SECURA OPzV cell

Capacity range: Operational life: IEC 60896-21 – cycles: Float voltage: Acid density: Electrolyte fixed in: Valve: Plate type: Alloy positive grid: Pole bushing: Container/lid:

Connectors:

Installation:

100 to 3250 Ah 20 years (stand-by) >1500 2.25 V+1% 1.24 kg/l GEL by fumed Silica 120 mbar tubular/flat **PbCaSn** 100% tight high impact SAN UL-rating 94 HB; V-0 on request bolted flexible or solid insulated copper connectors vertical, horizontal on request

BAE Gel Products - SECURA OPzV BLOCK

Capacity range: Operational life: IEC 60896-21 – cycles: Acid density: Float voltage: Electrolyte fixed in: Valve: Plate type: Alloy positive grid: Pole bushing: Container/lid:

Connectors:

Orientation:

50 to 900 Ah 18 years (stand-by) >1500 1.24 kg/l 2.25 V±1% GEL by fumed Silica 120 mbar tubular/flat PbCaSn 100% tight high impact SAN UL-rating 94 HB; V-0 on request bolted flexible or solid insulated copper connectors vertical, horizontal on request

Technology comparison:

BAE OPzV GEL	AGM	
Positive plate – tubular plate	Negative plate – Flat plate/grid plate	
 Gauntlet encase and protect active mass No mass softening (PCL2 effect) by counter pressure from gauntlet High mass reserve, reduce mass stress during cyclic operation 	Mass pasted into grid Softening of active mass during cycling easier possible (PCL2 effect)	
 Centered lead road with high cross section High corrosion life time Homogeneous allocation and discharge of active mass 	Limited mass per plateNo cyclic stabilityLimited capacity	

BAE Accelerated Life Time Test

Test results accelerated aging test:

Initial requirements:

- 15 years at 23 °C → corresponding to 250 days at 62,8 °C
- (acc. to Arrhenius approach)
- At the end of temperature : Seismic test (simulation of earthquake and aircraft crash)

Test procedure:

- Every 50 days 3h capacity test to 1,75 V/cell at room temperature
- Float current, growth of poles were measured frequently
- Tear-down analysis at the end of the test

BAE Accelerated Life Time Test

Test results accelerated aging test:

Test results accelerated cycling test:

- Procedure: 3 h discharge with 2 x 110 (here 86 A) equals to 70 % DoD
- Full charging for 21 h at 2.40 V
- every 50th cycles \Box capacity test until Crt = 0.8 (EOL criteria)

Solar cycle test acc. to IEC 61427:2002-04

Test results accelerated cycling test at 40°C/104 °F:

Solar cycle test acc. to IEC 61427:2002-04

Test results accelerated cycling test at 40°C/104 °F:

Thermal chamber for the life time test

Solar cycle test acc. to IEC 61427:2002-04

Test results accelerated cycling test at 40°C/104 °F:

Technology comparison:

	BAE OPzV GEL	AGM
IEC cycles	>1500 cycles	~700
Design Life	Cell: 20 years Block: 18 years	Ø 13 years
Float voltage per cell (driven by acid gravity)	2,23V	Ø 2,27 V
Needed installation space	Higher	Low
Weight (lead weight driven)	High	Low
Costs of acquisition	100 %	~ Ø 70 %

